Specific Learning Disorders: Neurobiological Foundations, Differential Diagnosis, and Educational Implications

Authors

DOI:

https://doi.org/10.56294/neuro2025268

Keywords:

Learning disorders, Dyslexia, Dyscalculia, Writing disorders, Executive function, Educational inclusion, Neurodevelopment

Abstract

Introduction: Specific learning disorders (SLD) involve persistent difficulties in reading, writing, and/or mathematics, with a neurobiological basis and not attributable to intellectual, sensory deficits, or inadequate instruction. Their prevalence in school populations ranges from 5–15%, with significant impact on academic performance, self-esteem, and social participation.

Objective: To synthesize evidence on the neurobiological foundations, differential diagnosis, and educational implications of SLD, guiding clinical and pedagogical practice.

Development: Dyslexia shows alterations in left temporo-parietal phonological networks and, in some cases, in the dorsal magnocellular-visual pathway, suggesting a multisystem disorder. Dyscalculia is associated with intraparietal sulcus dysfunction and altered numeric-mnemonic connectivity. Dysgraphia may be linguistic (phonological-orthographic deficit) or motor (dyspraxia/DCD), linked to working memory and executive function impairments. Comorbidities (e.g., ADHD) further complicate cognitive profiles and interventions. Strategies such as the Response to Intervention model support early detection, while Universal Design for Learning and assistive technologies promote educational inclusion. Continuous teacher training and socio-emotional learning programs are essential to mitigate negative effects and foster resilience.

Conclusions: SLD require comprehensive diagnosis, evidence-based interventions, and inclusive adaptations. Combining early screening, targeted support, accessible environments, and teacher training enhances academic and psychosocial outcomes. Further research is needed to optimize identification and intervention protocols, particularly regarding dyscalculia and emerging technologies.

References

1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR). 5th ed. Washington (DC): American Psychiatric Association; 2022. DOI: https://doi.org/10.1176/appi.books.9780890425787

2. Fletcher JM, Miciak J. Assessment of specific learning disabilities and intellectual disabilities. Assessment. 2024;31(1):53–74. doi:10.1177/10731911231194992. DOI: https://doi.org/10.1177/10731911231194992

3. Pham AV, Riviere A. Specific learning disorders and ADHD: current issues in diagnosis across clinical and educational settings. Curr Psychiatry Rep. 2015;17(6):38. doi:10.1007/s11920-015-0584-y. DOI: https://doi.org/10.1007/s11920-015-0584-y

4. Scanlon D. Specific learning disability and its newest definition: which is comprehensive? And which is insufficient? J Learn Disabil. 2013;46(1):26–33. doi:10.1177/0022219412464342. DOI: https://doi.org/10.1177/0022219412464342

5. Brandenburg J, Huschka SS, Visser L, Hasselhorn M. Are different types of learning disorder associated with distinct cognitive functioning profiles? Front Psychol. 2021;12:725374. doi:10.3389/fpsyg.2021.725374. DOI: https://doi.org/10.3389/fpsyg.2021.725374

6. Barbiero C, Montico M, Lonciari I, et al. The lost children: the underdiagnosis of dyslexia in Italy. PLoS One. 2019;14(1):e0210448. doi:10.1371/journal.pone.0210448. DOI: https://doi.org/10.1371/journal.pone.0210448

7. Aldakhil AF. Prevalence of developmental dyslexia among primary school children in Arab countries: a systematic review and meta-analysis. Res Dev Disabil. 2024;152:104812. doi:10.1016/j.ridd.2024.104812. DOI: https://doi.org/10.1016/j.ridd.2024.104812

8. Lin Y, Zhang X, Huang Q, et al. The prevalence of dyslexia in primary school children and their Chinese literacy assessment in Shantou, China. Int J Environ Res Public Health. 2020;17(19):E7140. doi:10.3390/ijerph17197140. DOI: https://doi.org/10.3390/ijerph17197140

9. Shalev RS, Auerbach J, Manor O, Gross-Tsur V. Developmental dyscalculia: prevalence and prognosis. Eur Child Adolesc Psychiatry. 2000;9(Suppl 2):II58–64. doi:10.1007/s007870070009. DOI: https://doi.org/10.1007/s007870070009

10. Mayes SD, Breaux RP, Calhoun SL, Frye SS. High prevalence of dysgraphia in elementary through high school students with ADHD and autism. J Atten Disord. 2019;23(8):787–96. doi:10.1177/1087054717720721. DOI: https://doi.org/10.1177/1087054717720721

11. Hamilton LG, Petty S. Compassionate pedagogy for neurodiversity in higher education: a conceptual analysis. Front Psychol. 2023;14:1093290. doi:10.3389/fpsyg.2023.1093290. DOI: https://doi.org/10.3389/fpsyg.2023.1093290

12. Videla R, Aros MB, Parada F, et al. Neurodiversity: post-cognitivist foundations of the 3E approach for educational inclusion of autistic students with technology. Front Hum Neurosci. 2024;18:1493863. doi:10.3389/fnhum.2024.1493863. DOI: https://doi.org/10.3389/fnhum.2024.1493863

13. Hobson HM, Toseeb U, Gibson JL. Developmental language disorder and neurodiversity: surfacing contradictions, tensions and unanswered questions. Int J Lang Commun Disord. 2024;59(4):1505–16. doi:10.1111/1460-6984.13009. DOI: https://doi.org/10.1111/1460-6984.13009

14. Chapman R, Botha M. Neurodivergence-informed therapy. Dev Med Child Neurol. 2023;65(3):310–7. doi:10.1111/dmcn.15384. DOI: https://doi.org/10.1111/dmcn.15384

15. Pigato G. Contributing to an inclusive education for neurodivergent students: sharing reflections, practices, and experiences. FEMS Microbiol Lett. 2024;371:fnae046. doi:10.1093/femsle/fnae046. DOI: https://doi.org/10.1093/femsle/fnae046

16. Parada FJ, Grasso-Cladera A, Rossi A, et al. Applied human neuroscience: fostering and designing inclusive environments with the 3E-cognition perspective. Eur J Neurosci. 2024;60(3):4148–4168. doi:10.1111/ejn.16463. DOI: https://doi.org/10.1111/ejn.16463

17. Liu T, Thiebaut de Schotten M, Altarelli I, Ramus F, Zhao J. Neural dissociation of visual attention span and phonological deficits in developmental dyslexia: a hub-based white matter network analysis. Hum Brain Mapp. 2022;43(17):5210–29. doi:10.1002/hbm.25997. DOI: https://doi.org/10.1002/hbm.25997

18. Yan X, Perkins K, Cao F. A hierarchical deficit model of reading disability: evidence from dynamic causal modelling analysis. Neuropsychologia. 2021;154:107777. doi:10.1016/j.neuropsychologia.2021.107777. DOI: https://doi.org/10.1016/j.neuropsychologia.2021.107777

19. Stein J. The visual basis of reading and reading difficulties. Front Neurosci. 2022;16:1004027. doi:10.3389/fnins.2022.1004027. DOI: https://doi.org/10.3389/fnins.2022.1004027

20. Gori S, Cecchini P, Bigoni A, Molteni M, Facoetti A. Magnocellular–dorsal pathway and sub-lexical route in developmental dyslexia. Front Hum Neurosci. 2014;8:460. doi:10.3389/fnhum.2014.00460. DOI: https://doi.org/10.3389/fnhum.2014.00460

21. Gori S, Seitz AR, Ronconi L, Franceschini S, Facoetti A. Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cereb Cortex. 2016;26(11):4356–69. doi:10.1093/cercor/bhv206. DOI: https://doi.org/10.1093/cercor/bhv206

22. Stein J. The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia. 2019;130:66–77. doi:10.1016/j.neuropsychologia.2018.03.022. DOI: https://doi.org/10.1016/j.neuropsychologia.2018.03.022

23. Vidyasagar TR, Pammer K. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 2010;14(2):57–63. doi:10.1016/j.tics.2009.12.003. DOI: https://doi.org/10.1016/j.tics.2009.12.003

24. Vidyasagar TR. Reading into neuronal oscillations in the visual system: implications for developmental dyslexia. Front Hum Neurosci. 2013;7:811. doi:10.3389/fnhum.2013.00811. DOI: https://doi.org/10.3389/fnhum.2013.00811

25. Habib M. The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain. 2000;123(Pt 12):2373–99. doi:10.1093/brain/123.12.2373. DOI: https://doi.org/10.1093/brain/123.12.2373

26. Tablante J, Krossa L, Azimi T, Chen L. Dysfunctions associated with the intraparietal sulcus and a distributed network in individuals with math learning difficulties: an ALE meta-analysis. Hum Brain Mapp. 2023;44(7):2726–40. doi:10.1002/hbm.26240. DOI: https://doi.org/10.1002/hbm.26240

27. Schwizer-Ashkenazi S, Roell M, McCaskey U, et al. Are numerical abilities determined at early age? A brain morphology study in children and adolescents with and without developmental dyscalculia. Dev Cogn Neurosci. 2024;67:101369. doi:10.1016/j.dcn.2024.101369. DOI: https://doi.org/10.1016/j.dcn.2024.101369

28. Schwizer-Ashkenazi S, McCaskey U, O’Gorman Tuura R, Kucian K. Altered effective connectivity of the numerical brain in children with developmental dyscalculia. J Neurosci Res. 2025;103(7):e70066. doi:10.1002/jnr.70066. DOI: https://doi.org/10.1002/jnr.70066

29. Michels L, Buechler R, Kucian K. Increased structural covariance in brain regions for number processing and memory in children with developmental dyscalculia. J Neurosci Res. 2022;100(2):522–36. doi:10.1002/jnr.24998. DOI: https://doi.org/10.1002/jnr.24998

30. McCaskey U, von Aster M, O’Gorman R, Kucian K. Persistent differences in brain structure in developmental dyscalculia: a longitudinal morphometry study. Front Hum Neurosci. 2020;14:272. doi:10.3389/fnhum.2020.00272. DOI: https://doi.org/10.3389/fnhum.2020.00272

31. Schel MA, Klingberg T. Specialization of the right intraparietal sulcus for processing mathematics during development. Cereb Cortex. 2017;27(9):4436–44. doi:10.1093/cercor/bhw246. DOI: https://doi.org/10.1093/cercor/bhw246

32. Duricy E, Durisko C, Fiez JA. The role of the intraparietal sulcus in numeracy: a review of parietal lesion cases. Behav Brain Res. 2025;482:115453. doi:10.1016/j.bbr.2025.115453. DOI: https://doi.org/10.1016/j.bbr.2025.115453

33. Rosenblum S. Inter-relationships between objective handwriting features and executive control among children with developmental dysgraphia. PLoS One. 2018;13(4):e0196098. doi:10.1371/journal.pone.0196098. DOI: https://doi.org/10.1371/journal.pone.0196098

34. Ruffini C, Osmani F, Martini C, Giera WK, Pecini C. The relationship between executive functions and writing in children: a systematic review. Child Neuropsychol. 2024;30(1):105–63. doi:10.1080/09297049.2023.2170998. DOI: https://doi.org/10.1080/09297049.2023.2170998

35. Soto EF, Irwin LN, Chan ESM, Spiegel JA, Kofler MJ. Executive functions and writing skills in children with and without ADHD. Neuropsychology. 2021;35(8):792–808. doi:10.1037/neu0000769. DOI: https://doi.org/10.1037/neu0000769

36. Rapp B, Purcell J, Hillis AE, Capasso R, Miceli G. Neural bases of orthographic long-term memory and working memory in dysgraphia. Brain. 2016;139(Pt 2):588–604. doi:10.1093/brain/awv348. DOI: https://doi.org/10.1093/brain/awv348

37. Alhaddad G, Danna J, Dione M, Longcamp M. The influence of fine motor skills and executive functions on automatized handwriting. Cogn Neuropsychol. 2025;:1–13. doi:10.1080/02643294.2025.2518179. DOI: https://doi.org/10.1080/02643294.2025.2518179

38. Leonard HC, Bernardi M, Hill EL, Henry LA. Executive functioning, motor difficulties, and developmental coordination disorder. Dev Neuropsychol. 2015;40(4):201–15. doi:10.1080/87565641.2014.997933. DOI: https://doi.org/10.1080/87565641.2014.997933

39. van der Fels IMJ, Smith J, de Bruijn AGM, et al. Relations between gross motor skills and executive functions, controlling for information processing and lapses of attention in 8–10 year old children. PLoS One. 2019;14(10):e0224219. doi:10.1371/journal.pone.0224219. DOI: https://doi.org/10.1371/journal.pone.0224219

40. Mingozzi A, Tobia V, Marzocchi GM. Dyslexia and dyscalculia: which neuropsychological processes distinguish the two developmental disorders? Child Neuropsychol. 2024;30(1):1–21. doi:10.1080/09297049.2023.2170997. DOI: https://doi.org/10.1080/09297049.2023.2170997

41. Landerl K, Fussenegger B, Moll K, Willburger E. Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. J Exp Child Psychol. 2009;103(3):309–24. doi:10.1016/j.jecp.2009.03.006. DOI: https://doi.org/10.1016/j.jecp.2009.03.006

42. Peters L, Op de Beeck H, De Smedt B. Cognitive correlates of dyslexia, dyscalculia and comorbid dyslexia/dyscalculia: effects of numerical magnitude processing and phonological processing. Res Dev Disabil. 2020;107:103806. doi:10.1016/j.ridd.2020.103806. DOI: https://doi.org/10.1016/j.ridd.2020.103806

43. Luoni C, Scorza M, Stefanelli S, Fagiolini B, Termine C. A neuropsychological profile of developmental dyscalculia: the role of comorbidity. J Learn Disabil. 2023;56(4):310–23. doi:10.1177/00222194221102925. DOI: https://doi.org/10.1177/00222194221102925

44. Poon K, Ho MSH, Wang LC. Examining distinctive working memory profiles in Chinese children with predominantly inattentive subtype of attention-deficit/hyperactivity disorder and/or reading difficulties. Front Psychol. 2021;12:718112. doi:10.3389/fpsyg.2021.718112. DOI: https://doi.org/10.3389/fpsyg.2021.718112

45. Zhang Z, Xue Y, Bai M, et al. Reading abilities and cognitive processing in Grade 3 children with ADHD comorbid with developmental dyslexia. J Psychiatr Res. 2025;189:521–27. doi:10.1016/j.jpsychires.2025.07.005. DOI: https://doi.org/10.1016/j.jpsychires.2025.07.005

46. Parke EM, Thaler NS, Etcoff LM, Allen DN. Intellectual profiles in children with ADHD and comorbid learning and motor disorders. J Atten Disord. 2020;24(9):1227–36. doi:10.1177/1087054715576343. DOI: https://doi.org/10.1177/1087054715576343

47. Crisci G, Caviola S, Cardillo R, Mammarella IC. Executive functions in neurodevelopmental disorders: comorbidity overlaps between attention deficit and hyperactivity disorder and specific learning disorders. Front Hum Neurosci. 2021;15:594234. doi:10.3389/fnhum.2021.594234. DOI: https://doi.org/10.3389/fnhum.2021.594234

48. Gosse C, Dricot L, Van Reybroeck M. Evidence of graphomotor dysfunction in children with dyslexia: a combined behavioural and fMRI experiment. Cortex. 2022;148:68–88. doi:10.1016/j.cortex.2021.11.021. DOI: https://doi.org/10.1016/j.cortex.2021.11.021

49. Döhla D, Willmes K, Heim S. Cognitive profiles of developmental dysgraphia. Front Psychol. 2018;9:2006. doi:10.3389/fpsyg.2018.02006. DOI: https://doi.org/10.3389/fpsyg.2018.02006

50. Berninger VW, Richards T, Abbott RD. Differential diagnosis of dysgraphia, dyslexia, and OWL LD: behavioral and neuroimaging evidence. Read Writ. 2015;28(8):1119–53. doi:10.1007/s11145-015-9565-0. DOI: https://doi.org/10.1007/s11145-015-9565-0

51. Waber DP, Boiselle EC, Yakut AD, et al. Developmental dyspraxia in children with learning disorders: four-year experience in a referred sample. J Child Neurol. 2021;36(3):210–21. doi:10.1177/0883073820966913. DOI: https://doi.org/10.1177/0883073820966913

52. Jolly C, Jover M, Danna J. Dysgraphia differs between children with developmental coordination disorder and/or reading disorder. J Learn Disabil. 2024;57(6):397–410. doi:10.1177/00222194231223528. DOI: https://doi.org/10.1177/00222194231223528

53. Chang SH, Yu NY. Handwriting movement analyses comparing first and second graders with normal or dysgraphic characteristics. Res Dev Disabil. 2013;34(9):2433–41. doi:10.1016/j.ridd.2013.02.028. DOI: https://doi.org/10.1016/j.ridd.2013.02.028

54. Andrade OV, Andrade PE, Capellini SA. Collective screening tools for early identification of dyslexia. Front Psychol. 2014;5:1581. doi:10.3389/fpsyg.2014.01581. DOI: https://doi.org/10.3389/fpsyg.2014.01581

55. Catts HW, Nielsen DC, Bridges MS, Liu YS, Bontempo DE. Early identification of reading disabilities within an RTI framework. J Learn Disabil. 2015;48(3):281–97. doi:10.1177/0022219413498115. DOI: https://doi.org/10.1177/0022219413498115

56. Tran L, Sanchez T, Arellano B, Lee Swanson H. A meta-analysis of the RTI literature for children at risk for reading disabilities. J Learn Disabil. 2011;44(3):283–95. doi:10.1177/0022219410378447. DOI: https://doi.org/10.1177/0022219410378447

57. Miciak J, Fletcher JM. The critical role of instructional response for identifying dyslexia and other learning disabilities. J Learn Disabil. 2020;53(5):343–53. doi:10.1177/0022219420906801. DOI: https://doi.org/10.1177/0022219420906801

58. Lonigan CJ, Phillips BM. Response to instruction in preschool: results of two randomized studies with children at significant risk of reading difficulties. J Educ Psychol. 2016;108(1):114–29. doi:10.1037/edu0000054. DOI: https://doi.org/10.1037/edu0000054

59. Al Otaiba S, Connor CM, Folsom JS, et al. To wait in Tier 1 or intervene immediately: a randomized experiment examining first grade response to intervention (RTI) in reading. Except Child. 2014;81(1):11–27. doi:10.1177/0014402914532234. DOI: https://doi.org/10.1177/0014402914532234

60. Gilmour AF, Harper J, Lloyd B, Van Camp A. Response to intervention and specific learning disability identification: evidence from Tennessee. J Learn Disabil. 2024;57(3):168–80. doi:10.1177/00222194231215013. DOI: https://doi.org/10.1177/00222194231215013

61. Colenbrander D, Ricketts J, Breadmore HL. Early identification of dyslexia: understanding the issues. Lang Speech Hear Serv Sch. 2018;49(4):817–28. doi:10.1044/2018_LSHSS-DYSLC-18-0007. DOI: https://doi.org/10.1044/2018_LSHSS-DYSLC-18-0007

62. Tanimoto S, Thompson R, Berninger VW, Nagy W, Abbott RD. Computerized writing and reading instruction for students in grades 4 to 9 with specific learning disabilities affecting written language. J Comput Assist Learn. 2015;31(6):671–89. doi:10.1111/jcal.12110. DOI: https://doi.org/10.1111/jcal.12110

63. Berninger VW, Nagy W, Tanimoto S, Thompson R, Abbott RD. Computer instruction in handwriting, spelling, and composing for students with specific learning disabilities in grades 4 to 9. Comput Educ. 2015;81:154–68. doi:10.1016/j.compedu.2014.10.005. DOI: https://doi.org/10.1016/j.compedu.2014.10.005

64. Forber-Pratt A, Hanson S, Bruyere S, et al. Assessment of and intervention with persons with disabilities. Washington (DC): American Psychological Association; 2022.

65. MacArthur CA. Using technology to enhance the writing processes of students with learning disabilities. J Learn Disabil. 1996;29(4):344–54. doi:10.1177/002221949602900403. DOI: https://doi.org/10.1177/002221949602900403

66. Asselborn T, Chapatte M, Dillenbourg P. Extending the spectrum of dysgraphia: a data-driven strategy to estimate handwriting quality. Sci Rep. 2020;10(1):3140. doi:10.1038/s41598-020-60011-8. DOI: https://doi.org/10.1038/s41598-020-60011-8

67. Desch LW, Hobart-Porter LJ, Houtrow A. Prescribing assistive technology: focus on children with complex communication needs: clinical report. Pediatrics. 2025;156(1):e2025072216. doi:10.1542/peds.2025-072216. DOI: https://doi.org/10.1542/peds.2025-072216

68. Zysberg L, Kasler J. Learning disabilities and emotional intelligence. J Psychol. 2017;151(5):464–76. doi:10.1080/00223980.2017.1314929. DOI: https://doi.org/10.1080/00223980.2017.1314929

69. Alesi M, Rappo G, Pepi A. Self-esteem at school and self-handicapping in childhood: comparison of groups with learning disabilities. Psychol Rep. 2012;111(3):952–62. doi:10.2466/15.10.PR0.111.6.952-962. DOI: https://doi.org/10.2466/15.10.PR0.111.6.952-962

70. Touloupis T. Facebook use and cyberbullying by students with learning disabilities: the role of self-esteem and loneliness. Psychol Rep. 2024;127(3):1237–70. doi:10.1177/00332941221138471. DOI: https://doi.org/10.1177/00332941221138471

71. Resurrección DM, Jiménez Ó, Menor E, Ruiz-Aranda D. The Learning to Be project: an intervention for Spanish students in primary education. Front Psychol. 2021;12:632617. doi:10.3389/fpsyg.2021.632617. DOI: https://doi.org/10.3389/fpsyg.2021.632617

72. Shany M, Wiener J, Assido M. Friendship predictors of global self-worth and domain-specific self-concepts in university students with and without learning disability. J Learn Disabil. 2013;46(5):444–52. doi:10.1177/0022219412436977. DOI: https://doi.org/10.1177/0022219412436977

73. Heiman T, Olenik-Shemesh D. Social-emotional profile of children with and without learning disabilities: the relationships with perceived loneliness, self-efficacy and well-being. Int J Environ Res Public Health. 2020;17(20):7358. doi:10.3390/ijerph17207358. DOI: https://doi.org/10.3390/ijerph17207358

74. Pannebakker FD, van Genugten L, Diekstra RFW, et al. A social gradient in the effects of the Skills for Life program on self-efficacy and mental well-being of adolescent students. J Sch Health. 2019;89(7):587–95. doi:10.1111/josh.12779. DOI: https://doi.org/10.1111/josh.12779

75. Wood SG, Moxley JH, Tighe EL, Wagner RK. Does use of text-to-speech and related read-aloud tools improve reading comprehension for students with reading disabilities? A meta-analysis. J Learn Disabil. 2018;51(1):73–84. doi:10.1177/0022219416688170. DOI: https://doi.org/10.1177/0022219416688170

76. Hurwitz LB, Vanacore KP. Educational technology in support of elementary students with reading or language-based disabilities: a cluster randomized control trial. J Learn Disabil. 2023;56(6):453–66. doi:10.1177/00222194221141093. DOI: https://doi.org/10.1177/00222194221141093

77. Fathi Azar E, Mirzaie H, Oftadeh Balani S, Hejazi-Shirmard M. Effects of transcranial electrical stimulation on academic and cognitive skills in individuals with specific learning disabilities: a systematic review. Neuroscience. 2025;576:241–52. doi:10.1016/j.neuroscience.2025.04.045. DOI: https://doi.org/10.1016/j.neuroscience.2025.04.045

78. Fathi Azar E, Hejazi-Shirmard M, Mirzaie H. Cognitive enhancement through technology: a review of transcranial electrical stimulation (TES) interventions in children and adolescents with specific learning disabilities. Child Care Health Dev. 2024;50(5):e13318. doi:10.1111/cch.13318. DOI: https://doi.org/10.1111/cch.13318

79. Bryant BR, Kim MK, Ok MW, et al. A comparison of the effects of reading interventions on engagement and performance for fourth-grade students with learning disabilities. Behav Modif. 2015;39(1):167–90. doi:10.1177/0145445514561316. DOI: https://doi.org/10.1177/0145445514561316

80. Butterworth B, Kovas Y. Understanding neurocognitive developmental disorders can improve education for all. Science. 2013;340(6130):300–5. doi:10.1126/science.1231022. DOI: https://doi.org/10.1126/science.1231022

81. Stone LA, Benoit L, Martin A, Hafler J. Barriers to identifying learning disabilities: a qualitative study of clinicians and educators. Acad Pediatr. 2023;23(6):1166–74. doi:10.1016/j.acap.2022.12.008. DOI: https://doi.org/10.1016/j.acap.2022.12.008

82. American Academy of Ophthalmology. Joint statement: learning disabilities, dyslexia, and vision — reaffirmed 2014.

83. Shanahan E, Choi S, An J, et al. Ongoing teacher support for data-based individualization: a meta-analysis and synthesis. J Learn Disabil. 2025;58(1):3–18. doi:10.1177/00222194241271335. DOI: https://doi.org/10.1177/00222194241271335

84. Schmitterer AMA, Brod G. Which data do elementary school teachers use to determine reading difficulties in their students? J Learn Disabil. 2021;54(5):349–64. doi:10.1177/0022219420981990. DOI: https://doi.org/10.1177/0022219420981990

85. Hoth J, Larrain M, Kaiser G. Identifying and dealing with student errors in the mathematics classroom: cognitive and motivational requirements. Front Psychol. 2022;13:1057730. doi:10.3389/fpsyg.2022.1057730. DOI: https://doi.org/10.3389/fpsyg.2022.1057730

Downloads

Published

2025-09-05

Issue

Section

Original

How to Cite

1.
Germán Flores L. Specific Learning Disorders: Neurobiological Foundations, Differential Diagnosis, and Educational Implications. Neurodivergences [Internet]. 2025 Sep. 5 [cited 2026 Feb. 21];4:268. Available from: https://neurodivergences.ar/index.php/neuro/article/view/268